Teaching Operating Systems Concepts with
Execution Visualization

Abstract

We present an original approach to introduce Operating Systems concepts to Computer Engineering
undergraduate students. These concepts are the basis on which students build a mental model of
the whole computer in order to make important design decisions throughout their career. One
major challenge in teaching operating systems is the complex, intangible, and nondeterministic
nature of an actual computer system containing many cores operating in parallel.

We propose a global approach to address this challenge involving a full-scale open source operating
system, a carefully designed set of experiments and novel execution visualization tools. In order
to deconstruct their preconceptions, students are exposed to phenomena that seem contradictory
at first glance, but are the result of the interaction between the microarchitecture, the operating
system and the libraries. In the spirit of constructivism, students are invited to observe the effect of
running their own programs as part of a problem solving challenge. Participants can thus observe
the duration of underlying system calls and the actual scheduling performed by the operating
system which is otherwise hidden. Experiments are proposed to compare the impact of design
choices and to lead to improved awareness of performance implications. We describe five problem
solving activities that we developed and expose the purpose of each tool used. In the context of the
first semester of deployment, we evaluated the activities using a qualitative method. We conducted
online surveys and a focus group, and observed a high learning satisfaction level for students. This
validates the proposed approach with a high level of confidence.

1 Introduction

The operating systems course is part of the classical curriculum of undergraduates in software
and computer engineering. The content is well established from decades of iterative refine-
ment and covers topics such as task management, system calls, synchronization, scheduling,
memory management, and file system structure.»? There are usually practical activities,
or laboratory assignments, that complement the lectures. One approach to these activities
consists in using simulators.®*® A simulator can help visualize the execution of classical
algorithms, step-by-step. However, subsystems interaction is not covered from these ac-
tivities, such that the global perspective is missing. The other common approach involves
programming a small scale operating system®” or modules of an existing operating system.®
Unfortunately, this approach does not recognize that most students will use, rather than
develop, an operating system, and that making one does not automatically translate into
using them efficiently. Both the simulation and implementation approaches lack the time
dimension of an actual system. As such, being a good auto mechanic does not necessarily
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Figure 1: Control Flow View example

make you a good racing driver, although both require a thorough knowledge of the car and its
parts. In addition, students are often reluctant to work with a toy like small-scale operating
system, not in widespread use.

Instead, we propose to use an actual operating system implementation and visualize its
execution by tracing it. Visualization tools evolved since early attempts to use them for
teaching,” creating an opportunity to increase comprehension by integrating these tools. Our
hypothesis is that this approach, based on observation, is well suited for an introduction to
operating systems.

Our contribution consists in designing activities involving execution visualization tools.
Among them, the main one is the control flow view. This view displays the process state
as a function of time. Figure 1 shows an example, including key events of a running task.
The process runs in userspace and then performs a write. The task is preempted, either
because a more important task becomes ready or the task quantum expired. The rest of the
execution shows a blocking read, that yields the CPU while data is loaded.

The proposed activities are based on a constructivism background,'® a well established ped-
agogical perspective in engineering education.

2 Course overview

The targeted operating system course is part of the first year of specialization. It has both
the computer organization and object-oriented programming courses as prerequisites. It is
important to realize that the presented activities are designed in that context, because the
constructivism approach, on which they are based, requires that the participant should have
proper prior knowledge to be effective.

Activities involves mainly C/C++ code, while some small parts are in assembly. These pro-
gramming languages are typically used for their ability to reveal the hardware and software
interfaces. In the present context, this choice also has the advantage of simplifying the rela-
tionship between the code and it’s run-time representation at the system level. We highlight
the pedagogical value of each reference to assembly in activities presentations.



The first four activities are performed on Linux workstations running the current Fedora
release. We selected Eclipse CDT as IDE for its convenience and availability.!! We used the
Linux Trace Toolkit next generation (LTTng) as kernel tracer, in addition to the User-Space
Tracer (UST).'? This combination allows correlating events between the operating system
and the application. We used the Eclipse Linux Tools Tracing and Monitoring Framework
as trace viewer for its ease of use, and also because students were already familiar with it.
We also used other standard tools such as strace and hexdump.

We analyzed the security implications of kernel tracing before the installation of LTTng.
The IT department does not grant root access on workstations, as required to record kernel
events with perf.!® Fortunately, LTTng can be configured such that a group can trace the
kernel without requiring additional privileges. Since the tracing session records events for the
whole system, we verified that the instrumentation available does not leak sensitive informa-
tion. In particular, we verified that passwords can’t be recovered from keyboard interrupts
and that user-space memory accessed by system calls is not recorded. We considered that
recording opened files names and command names without arguments is not an issue, since
few restrictions exist to access this information in the first place.

The fifth and last activity focuses on the Windows API. Technically, it would have been
possible to do this activity on Linux by cross-compiling and running it with Wine.'* Para-
doxically, it may represent a compelling approach to study the internals of the Windows
API. However, we opted instead for the simplicity of using Windows workstations during
the first iteration. We nevertheless applied the same spirit of run-time analysis with a trivial
tracing implementation.

3 Activities description

In this section, we present activities and explain the intent behind each one in terms of ped-
agogical objectives. Activities are developed according to the following cognitive strategies:

e Comparative study: compare related concepts in order to reveal similarities and dif-
ferences. It aims at building the student’s knowledge network.

e Parameter exploration: follows a scientific approach of changing one parameter value
to see its effect.

e Exposure to surprising phenomena: challenge preconception and foster questioning
that prepare students to actively search for answers.

e Problem solving: practice newly acquired knowledge by achieving programming chal-
lenges inspired from actual situations.

e Self-verification: test cases that the student can run to verify that its implementation
produce the expected result. Aims at increasing student’s autonomy and confidence.



We use execution visualization in each activity as a mean to activate these cognitive strate-
gies. The visual representation allows the construction of an abstract mental model of the
system, including the time dimension. In addition, because the system interface is a con-
vention determined by the hardware, that every programming language must respect, the
tracing view is a strong generalization that helps to create rich connections between con-
cepts of each component of the system. Whenever possible, we tried to link activities to real
situations that students can relate to. Thus, participants can appreciate the importance of
their learning while developing their programming skills.

Each session lasts three hours. We expect students to spend a few additional hours to
complete their analysis and write a short report, following each session. We think that the
proposed activities are very intense in terms of amount of material, experimentation, and
code, and therefore use three strategies in order to save time. First, we provide a code
skeleton containing boilerplate code that does not add pedagogical value. Participants can
free their mind from gory details and focus on the specific aspect that matters. Second, we
provide scripts to automate repetitive steps, such as launching tracing experiments. Third,
the instruction document serves also as a report template, thus allowing students to write
findings while performing the activity. This document is part of a paperless grading process,
and is returned annotated. Because the setup is well established, we can afford to review
their code and provide valuable feedback.

3.1 Session 1: Introduction to concepts

Students have programmed a robot on an embedded board as assignment in a previous
semester project course. We take advantage of this prior knowledge as a starting point for
the introduction. The teacher deliberately introduces two bugs in a program that controls
LEDs, to demonstrate inherent limitations of this bare-metal platform lacking an operating
system. The first bug makes the program enter an infinite loop that puts the system in a
non-responsive state. The only way to recover from that fault on this system is to press
the reset button. We then enable a routine that overwrites the output pins, making LEDs
behave abnormally. This example helps highlight the fact that there is no way to restrict
access to output ports, and even to bus addresses in general. This demo aims at raising
questions about the purpose of the operating system in terms of reliability and security.

The core activity consists in evaluating the precision of nanosleep. We chose nanosleep
for its blocking behaviour that involves the scheduler in a deterministic way. Programming
in assembly at this stage is essential to reveal the purpose and the necessity of the syscall
instruction of the processor. A system call, as explained in the course lectures, triggers the
request to the operating system and consequently allows privilege separation. The student
can then realize that his code stops executing while the system call is performed. Program-
ming in assembly makes sure there is a one-to-one relation between the code and the actual
execution. The equivalent C program, linked to the standard library, produces numerous
non-related system calls for library loading and memory management, and we want to avoid
the confusion brought by these potentially overwhelming details. The assembly program



$ strace ./minisys > /dev/null
execve("./minisys", ["./minisys"], [/* 54 vars */]) =0

write(1, "\nHello'\n", 8) =8
nanosleep({0, 1000000}, NULL) =0
_exit (0) =7

Figure 2: System calls performed by the program
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Figure 3: Process state of the program according to time

that we provide already contains one write and the final exit system calls. It also includes
the calling convention to follow and a link to the system call declarations, directly into the
source code of the Linux operating system.

Students can then verify their program by running it with strace. The resulting output
in Figure 2 shows each system call actually performed, and thus can be compared with the
expected system calls.

Once the program is verified, a kernel trace of the program execution is created and opened
with the Eclipse trace viewer. The result from the control flow view is shown in fig-
ure 3. Convenient information is displayed, like system call names and intervals duration (as
mouseover). Students can explore the execution and compare various delays in the system,
such as the time required to perform the write and the actual sleep time of the nanosleep.
It becomes clear that nanosleep is a type of passive waiting that yields the CPU, involving
the scheduler.

3.2 Session 2: Processes and threads

The objective of the second activity is to present ways to spawn execution units and run
new programs. The session is divided into three parts. The first part concerns the difference
between types of execution units (processes and threads). The second part consists in an
introduction to exec (), and the last part is an exercise combining fork and exec.
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Figure 4: ATMs experiments in the control flow view

The session starts by a simulation of two ATMs on a global bank account, each doing
operations simultaneously. The serial code is provided and the code to spawn virtual ATMs
must be completed using processes, normal threads, and userspace threads. The effect of
these operations on the final balance is observed. When using processes, the final balance
does not change despite operations in the spawned processes. When using normal threads,
the balance computed is incorrect and differs from one run to the next. Only when using
userspace threads is the right balance computed. Our intent is to expose students to strange
phenomena in order to raise questions and put them in a state where they will actively seek
an explanation to these phenomena.

The program is then traced with LT Tng, as shown in figure 4. By zooming on the locations
where tasks are spawned, the student sees that a call to clone is done to create either
processes or threads, and thus that the difference resides in the arguments provided to this
system call. LTTng doesn’t decode flags passed to the clone system call. The student uses
strace to decode these arguments. We explain how to access the documentation about
system calls with man so that students can search for information about relevant flags which
describe the effects on address space sharing and explain their differences. In the case of
userspace threads, there is no clone system call performed and this execution looks like the
serial one, therefore explaining why no race condition occurs.

The next activity is a small challenge that consists in executing three programs with exec,
one after the other, without creating new processes. The root program has three calls to
exec, but only the first one is executed, and the rest of the program is not executed as one
would normally expect. This is done to underline a key aspect of exec, namely that it does
not return on success, and to challenge a preconception about program execution.

The last activity of this session is to create a wrapper that executes a program without ad-
dress randomization, a feature used to make security attacks harder. In some circumstances,
one may indeed need to disable this feature, in particular when studying security attacks
themselves. Students need to complete the code of the wrapper by combining fork and
exec. We provide a program that displays key addresses of variables and functions in order
to observe the effect of the randomization and to allow students to test their implementation.



3.3 Session 3: Synchronization, signals and inter-process commu-
nication

The session starts with a comparison between three types of locks, used to serialize concurrent
operations on a structure shared by two threads. For each execution, we can specify the
length of the critical section and the number of cycles to perform. The critical section
should be protected by these three locks. The first type of lock consists in a single mutex,
equivalent to a binary semaphore. The second type of lock consists in a set of relayed
binary semaphores, one per thread. The third and last type of lock studied consists in a
minimal spinlock implementation that we provide in assembly. The program includes a check
command that allows students to verify the proper working of locks.

The program is then run under tracing. Various observations can be made concerning per-
formance issues, fairness, reliance on system calls, and blocking behaviour of the different
types of locks. For instance, Figure 5 a) shows that a mutex is implemented with the futex
system call, that can block, while spinlocks hog the CPU in userspace. This can be explained
by looking at the spinlock implementation in assembly where it becomes obvious that CPU
cycles are burned while polling for the lock. Another example, about lock fairness, is given in
Figure 6. We observe in a) that a mutex may be unfair if the lock is obtained just after being
released, while chained semaphores in b) produce a pattern that resembles a checkerboard.
However, if the critical section is short and frequent, a simple mutex is much faster on av-
erage than the perfect fairness achieved with chained semaphores, where a context switch is
forced at each cycle. Understanding the fine differences between lock types, clearly exposed
by looking at their detailed behavior, would be hard to achieve without tracing.
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Figure 5: Difference between mutex and spinlock

The next activity is about implementing a deadlock detection algorithm between two threads.
Students already know from the course material that a deadlock can occur when two mutexes
are locked in reverse order. The deadlock can be observed when the output of the program
stops and must be terminated by hand. We ask students to automatically exit if a deadlock
occurs. A timer signal is configured to periodically call the watchdog method, in which
the deadlock detection must be implemented. Signal SIGALRM will interrupt the program
execution by nesting over the signal handler even if the application is deadlocked.

The last activity concerns a producer-consumer application communicating with pipes. The
goal is to compute word frequencies in a text. The first process tokenizes words read from
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Figure 6: Fairness to access a critical section

standard input and writes each resulting string and their length on their own pipe. The
second process counts word frequencies in a hash map. The application stops when there is
no more input to process. Figure 7 shows the architecture of the application. The tokenizer
and the frequency code is provided, and students have to connect the two processes with
pipes. One drawback of the default signal handling is that all tasks quit and partial results
are lost when control-C is hit. The last task is to overload signal SIGINT in order to stop
processing and to display partial results before exiting.

results (stdout)

text (stdin)

Figure 7: Architecture of the word frequency app

3.4 Session 4: Memory management

The first activity of this session is to experiment with conditions that raise segmentation
faults. Students know that a segmentation fault is some kind of invalid memory access, but
what really triggers them? To answer this question, the memory is scanned from a valid
address until a segmentation fault occurs. The signal handler for SIGSEGV is overloaded to
display the last scanned address, together with its offset from the start address, before the
program exits. The scan is performed forward and backward to locate the data address range
within the valid address range. In addition, the program saves the /proc file representing
the virtual memory area maps of the process. The students now have all elements in hand
to connect these concepts, since the scan yields addresses from the maps.

But what does the content of a memory page look like? To answer this question we propose
to dump a whole page from the stack and the heap into a file. We write fun hexadecimal
patterns to memory as distinct marks such as 0xCAFEBABE and OxDEADBEEF. The code that
saves the page must be completed. The main task here is to compute the start address of
the page from the pointer. Once pages are saved, students can use hexdump to display the



raw memory content and find the location of the marks. These findings are used to explain
the result of the next activity.

The last activity of this session involves tracing the memory demands of an application and
relating it to pages effectively allocated at the system level. Three event types are recorded.
First, the stack size is measured by saving the stack pointer on each function entry. Second,
heap memory allocations are tracked by tracing calls to malloc() and free(). Last, kernel
events mm_page_alloc and mm_page_free indicate the amount of pages mapped to the process
address space. We provide the application drmem that makes allocations on the heap or
the stack. Many parameters can be specified like the number and size of allocations, the
number of allocation and deallocation cycles, and whether to access or not the allocated
memory. Figure 8 shows the amount of memory allocated with respect to time for three
heap experiments. In a), large chunks of one megabyte are allocated on the heap, but not
filled. In this situation, almost no page is effectively allocated by the operating system. In
b), the same experiment is done, except that the memory allocated is actually filled. We
see that pages are allocated as the memory is filled, and this is related to the page fault
mechanism. The third experiment in ¢) involves allocating one million integers, but then
the number of pages ends up greater than the usable memory. The alignment and metadata
maintained by the allocator explains this overhead and is clearly visible from the page dump
of the previous experiment. In these three experiments, the amount of memory allocated by
the operating system may be below, equal, or above what is requested. It aims at presenting
corner cases related to allocation. While astonishing at first, these cases can be explained
by the material presented during the class. We ask students to compare heap experiments
with results obtained from allocations on the stack.

3.5 Session 5: Image processing pipeline

The last session consists in completing an image processing pipeline. It summarizes material
from previous activities, but the implementation is done with the Windows API instead.

The goal is to complete the program to apply, in parallel, one or more effects to a set of im-
ages. Many effects are available such as sharpen, blur, and saturation. One thread is spawned
for each pipeline stage and they are linked together with a blocking queue. The students
are asked to implement thread management code and a blocking queue using semaphores.
Restricting the queue length is important to limit memory usage in the application. Other-

wise, the program could quickly load numerous images, thereby possibly exhausting available
RAM.

Once the application is working properly, students are asked to propose a default queue
length, and to justify it using their experimental results. We propose to the students to
trace the number of images waiting in queues, according to the processing time of an image
set. An example of such a run is shown in Figure 9. They can experiment with the effect of
changing the maximum queue length on the total running time and memory consumption.
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Figure 9: Queue size of the pipeline according to time

Moreover, the slowest stage in the pipeline can be identified when the input queue fills up.
This activity has the benefit of exposing students to queueing theory in an intuitive manner.

4 QOutcomes

The above activities were used for teaching Operating Systems during the 2013 Fall semester.
There were 58 students registered for the class.

Comparing the proposed activities to other approaches would require multiple groups with
different material. However, it was not possible for logistic reasons. Instead, our goal is to
verify that activities are well suited to the context at hand, to learn about related difficulties,
and to document potential improvements. We invited students to participate in an online
survey at mid-term and we conducted a focus group at the end of the semester. We plan to
perform in the following semester a quantitative analysis on students grades to determine
the effect of the new material.

4.1 Survey

A survey was performed after the third session. We asked students to which extent, on a five
point scale, they considered activities helpful in understanding the course material. We also
asked more specifically about the helpfulness of execution visualization tools. Summaries of
answers are presented in figure 10. Students agreed to a large extent that activities were
helpful. The rate is slightly lower for the question specifically about execution visualization
tools.

We analyzed comments from students to understand the situation. We found that some
students were overwhelmed by specific technical details related to usability of visualization
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Figure 10: Summary of surveys’ answers

tools. These difficulties confirmed observations made during interactions with students. We
present solutions to address this issue in the future directions section.

4.2 Focus group

Following the last session, we conducted a focus group to get feedback about the overall
semester. Topics discussed covered material comprehension, resources quality, interest and
motivation, difficulties encountered, and improvement ideas. The duration was set to one
hour and half. An external person facilitated the meeting so that students would feel com-
fortable to speak freely. The objective was to compose a group of five to eight participants,
and finally six volunteers were enrolled.

Many students said that visualization tools were an asset for understanding. Without the
course, they would not have known about these tools. It was appreciated that the tools are
free. Some of the participants installed the tools on their computer to work from home, but
also mentioned that doing so was tedious.

One of the main issues raised by the group concerns the waiting time to get help. The
ratio of 30 students for one laboratory assistant is too high. The type of activity proposed
requires more resources to support students adequately, especially the first semester, before
the material is revised based on the feedback.

In terms of content, it was suggested to trace another programming language, and to explore
other system calls such as mmap and mprotect. Following these suggestions would incur
relatively small changes. Other students expected to code in kernel mode. They suggested
to add an activity that would consist in programming a device driver. Doing so would require
a virtual machine setup in order to make it practical. The higher difficulty involved with



kernel level programming, for instance testing and debugging, must be taken into account
in the design of such activity; it may be more appropriate for advanced courses.

Opinions are divided about the amount of work involved. Some students took much more
time to complete activities, while others would have liked to go further. The amount of work
thus seemed to be an appropriate compromise. Additional help could reduce time lost, while
optional activities could be proposed to enthusiastic students.

5 Future directions

We plan to improve the activities in several ways during upcoming semesters. We want
to address usability issues with the trace viewer. The first issue concerns the location of
the workspace directory. The workspace contains the trace index, and it must be on the
local hard drive for optimal viewer performance. Unfortunately, since Eclipse is also used as
IDE, the default directory is on the network drive of the students and this causes noticeable
slowdown for trace navigation. In addition, two instances of Eclipse must be started, and it
was one major source of confusion. We plan to use a repackaged subset of Eclipse for tracing
purposes only. The workspace directory will be set automatically, and using a separate tool
will avoid the confusion with the Eclipse IDE.

In order to simplify installation steps, we will focus on supporting Ubuntu. LTTng kernel
modules are packaged for Ubuntu, and the system will compile modules on the fly for each
kernel version installed. Currently, this must be done manually on Fedora. We will provide a
pre-configured virtual machine to further simplify the setup. Once downloaded, the students
will be able to run it and perform experiments from home.

In the short term, and for logistic reasons, we do not plan to add any activity involving
kernel mode programming. However, we feel that this could be interesting in the future and
we will continue to investigate its pedagogical value. For instance, an activity could consist
in instrumenting a device driver to evaluate one aspect of its performance.

In terms of pedagogical approach, we want to evaluate the possibility of including more socio-
constructivist aspects to these activities. We believed an online forum would be a good way
to share knowledge, yet we observed low participation despite advertising it. We will instead
evaluate the possibility to include a project presentation or programming competition.

6 Conclusion

We presented a way to integrate execution visualization into the Operating Systems course.
We described five activities we designed, tools we used, and their purpose. Results of the
qualitative evaluation shows that activities are helpful toward learning operating systems
concepts. We identified future improvements to increase satisfaction. Finally, we discussed
potential developments that could help continue improving these activities.
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