
Thin-OSCAR : Design and future implementation
Benoı̂t des Lignerisa b∗, Michel Barrettea, Francis Giraldeauab, Michel Dagenaisb

aCentre de Calcul Scientifique,
Université de Sherbrooke, Québec, Canada

bDépartement de génie informatique,
École Polytechnique, Montréal, Québec, Canada

A description of the actual status of the thin-OSCAR projectwill be made. Future development of the project will be detailed and desired
functionality will be exposed. We will then determine and analyze the interactions that are needed with the different components of OSCAR.

Une description du statut actuel du projet thin-OSCAR sera faite. Enfin, les grands axes de développement du projet seront discutés
ainsi que les fonctionalités additionnelles souhaitées. Une analyse des interactions requises avec les différentes composantes d’OSCAR sera
proposée.

Introduction

While OSCAR [1] has been conceived for clusters with
disk(s) since its very first version, diskless (and system-
less) support was a feature that lot of people expected. The
Center for Scientific Computing [2] (CCS) has built seve-
ral clusters without disk [3]. We tested OSCAR and were
easily convinced of it’s quality and professionalism espe-
cially compared to our own home-made scripts. We deci-
ded to use OSCAR for our diskless cluster and then trans-
fer our diskless expertise to the OSCAR project. The thin-
OSCAR [4] work-group was created to specifically analyze
and solve problems that will arise while adding this disk-
less clusters support.

We will first define essential notions for a diskless clus-
ter. Then, the actual implementation of thin-OSCAR will
be exposed. We will expose a« road-map» for the deve-
lopment of thin-OSCAR. Interaction with OSCAR will be
detailed so that features can be discussed, prioritized and
eventually added to the OSCAR framework.

1 General definitions

This section presents some useful notions from a node
perspective and several existing technical solutions for
diskless support.

1.1 Node Definition

We planned to support several types of nodes, from
nodes without disk to nodes with at least a disk dedica-
ted to the cluster. In this section, we will define the node
thickness levels.

1.1.1 Diskless nodes

Diskless nodes are well named : they have no disk. The
main consequence is that the node has no functionality to
boot without the presence of a network mechanism to ini-
tiate the boot process and then provide necessary perma-

∗Corresponding author : benoit@des.ligneris.net

nent storage (disk) over the network. This kind of node
is generally found in dedicated diskless clusters and in
network terminals [5]. However, nodes with disks can be
considered diskless when, for security or practical reason,
the disk cannot be used. This can be the case in a GRID en-
vironment where cluster nodes are workstation during the
day for instance. It allows nodes that are not used in a clus-
ter to be very rapidly integrated into a cluster without any
alteration of the “main” operating system stored on their
disk.

Diskless clusters maybe more efficient, affordable and
reliable than clusters with disks. Limitations on the type of
computation that can be made on this kind of nodes exist :
intensive I/O applications could be executed on such nodes
but obviously, will not scale well and slow down each cal-
culation to the point it is extremely inefficient. It will even
crash the master node, if the protocol used is not robust
enough.

In order to limit or even avoid I/O intensive tasks on this
kind of node, a special property must be defined so that the
queuing system can manage efficiently those nodes (pro-
perty proposed name :diskless).

1.1.2 Systemless nodes

Those nodes have a file (swap file, temporary storage), a
partition (swap, temporary storage) or a complete disk de-
dicated to the cluster ; they don’t contain a disk bootloader,
and boot from the network. There is large variety of nodes
and no more formal definition is necessary.

This type of node is complicated to manage and special
precautions must be taken : some useful data may already
be stored on the disk (even alien operating systems) and
because they are not completely diskless, the disk has to
be accessed with care, especially when installing the node
(initialization of the swap file, copy/rsync of directories,
formating of partition). If those nodes have swap space and
temporary storage, then they have no particular property
for the queuing system, otherwise they will have the same
property as the diskless nodes (diskless).

1.1.3 Diskfull nodes

Those nodes have dedicated disks for the cluster. This is
the only type of node currently managed by OSCAR. Ma-
nagement of nodes can be done entirely within the OSCAR
framework : installation from scratch of the nodes, inclu-
ding hard disk formating, or update of the image (via the
C3 [6] commandcpushimagecommand).

1.2 Diskless and systemless clustering solutions

Several solutions exists to boot a node without disk.
We will not discuss here the different booting mechanisms
(PXE, floppy, ...) but the different models that exist so that
nodes can be functional.

The main idea behind diskless solutions is that disks are
useless for numerous types of calculation. Because network
is a prerequisite in order to have a cluster, you can get rid of
disk by using a network boot process. Moreover, disks are
a point of failure, and because you must store nodes data
onto permanent storage, like SAN, disks on nodes brings
only trouble.

1.2.1 Root-NFS model

To the best of our knowledge, this is the oldest solution.
The NFS protocol is very robust and can be used, if the
kernel supports it, to initialize and run a system directly
from the network. It does not solve the first step (i.e. how to
transfer the initial kernel !) but, along the years, this method
proved its viability and reliability [3].

Its main drawback is a scaling problem that is common
to all clusters that share files with the NFS protocol (/home

is generally exported and used like a distributed resource
among the nodes). As a consequence, if computations make
intensive I/O usage, network will be exclusively used by
the NFS protocol, and then, the cluster will be paralyzed
and finally crash the system (NFS server), depending on
the quality of the NFS implementation.

A common solution to this problem is to use a dedica-
ted network exclusively for the transport of information for
permanent (NFS) storage. However, it does not solve the in-
herent NFS problem : server is central and NFS (network)
load can’t be distributed. While this problem wasn’t very
important when building small clusters, nowadays, it is a
very important problem as clusters are commonly built with
more than 1000 nodes.

In that respect, diskless clusters have the same problem
but it occurs on a smaller scale because NFS is more hea-
vily used. The complete root file system of each nodes re-
sides on the NFS server. Only /opt and /usr are common
(and read only). As such, diskless nodes are not good can-
didates for large root-NFS based clusters.

1.2.2 Ramdisk model

With this approach, a minimal ramdisk containing a
completely functional Linux system is uploaded to the
client. It’s root device is in RAM. Once this is done, it can

mount NFS partitions or any distributed file-system parti-
tion in order to access programs and users data. Once this is
done, some RAM is used by the root-RAM-disk (see [10]
for a more complete description of the process). The typical
footprint of the minimal ram disk is20MB and it involves
either recompiling your kernel or making some root-raid-
ramdisk.

The main interest of this approach is that the transfer
of the initial ramdisk can be multi-casted so that booting
a cluster can be very fast (this is not possible with NFS).
Another advantage is that the connection with the file ser-
ver can be lost and the node will still be up and running
correctly (as the/var partition is included in the ramdisk).

1.2.3 Network Block Device (NBD) model

This is a relatively new distributed file system, compa-
red to NFS (first version around 1997) [11, 12] that seems
very interesting for clusters. NBD devices cannot be shared
unless readonly but they can be duplicated and, as a conse-
quence, load balancing and even redundancy can occur so
that the network will be used much more efficiently. It al-
lows much better scaling : you can add a NBD device on
another file server so that your network does not saturate as
you add nodes to your cluster. The team isn’t aware of any
clustering solution that use this file system.However, repla-
cing NFS is definitely needed so that a better scalability can
be achieved.

1.2.4 Single System Image Model

This is a whole new class of clustering. It doesn’t need to
be diskless but this model supports diskless clusters natu-
rally. The idea behind those implementations (e.g. [13–16])
is to simplify both the administration and usage of clusters.
It is the same idea behind SMP computers : the whole clus-
ter appears as a single resource with lots of CPU and RAM.
Efficient algorithms allow either queuing or load balancing.
Several clustering distributions exist that are built with
diskless nodes in mind and function very well with disks
(for swap, temporary storage or distributed file-system).

2 Actual Implementation

The actual implementation of thin-OSCAR is very
simple and is more a proof of concept than anything else. It
is based on Ram Disk model. The script is a non-interactive
Perl scriptoscar2thin.pl which operates in a serial way,
transforming step after step a regular systemimager image
into a RAM disk for diskless operation. Then, files are mo-
ved to their relevant location (/tftpboot) and some confi-
guration files are modified on the server so that NFS export
and PXE operations are adapted for the diskless cluster. We
will examine each of these steps.

While the implementation details of those steps are ex-
pected to change, general ideas are expected to stay as de-
velopment progresses, adding more user-friendliness and
options in the process. Therefore, it seems interesting to
detail those functions.

2.1 Image creation

We provide some reduced-size image into OSCAR in the
oscarsamples/Mandrake-8.2-noX-i386.rpmlist

andoscarsamples/Mandrake-9.0-noX-i386.rpmlist

which are rpm lists with a minimum number of RPMs :
no Xfree86 and no compiler on the node. This image list
can certainly be reduced but those files are a good starting
point.

2.1.1 Blank image creation

Loopback device support has to be available on the sys-
tem (master node) where this script is executed. ”loop” is
the module that enable the loopback device support. The
script creates a traditionalext2 file-system as a loopback
device. The size of this partition has to be defined otherwise
it is 80Mb which should be sufficient in most cases. Note
that this maximum size will not be used in RAM (Ramdisk
uses only their exact size) nor be transfered via the network
(the image is compressed in the process). This file-system
is then mounted in a temporary location called image di-
rectory.

2.1.2 Image copy and customization

The relevant directories are copied from their syste-
mimager image location to the image directory :/bin ,
/boot , /dev , /etc , /home , /lib , /mnt , /proc , /root ,
/sbin , /var (some of the copied directories are empty).
The directories/usr and /opt are created : they will be
used as mounting point for the NFS exported file-system.

The /etc/fstab file is then generated in the image
directory and contains the/dev/ram0 device as its root
mount point, the/home is mounted via NFS (standard OS-
CAR) and the/opt and /usr directories are NFS mount
points from the systemimager image directory on the ser-
ver.

Networking capabilities are then generated (mainly
/etc/sysconfig/network-scripts/ifcfg-eth0

which is configured via DHCP).

2.1.3 Image cleaning

This step is interesting because it allows us to reduce
considerably the image size. At this step, two optimizations
are made. First, we delete the modules directory (at least
10Mb in recent Linux distributions) and the RPM database
(no further RPM operation on the node).

2.1.4 Server “configuration”

The /etc/hosts file is copied in the image
directory, /var/spool/pbs/server name and
/var/spool/pbs/mom priv/config generated in the
image directory so that PBS will be functional on the
nodes.

Master Node Node

/bin
/boot
/dev
/etc
/lib
/mnt
/proc
/root
/sbin
/var

Root Ram Disk
/dev/ram0

mounted as /
/bin
/boot
/dev
/etc
/lib
/mnt
/proc
/root
/sbin
/var

SystemImager
image transformed
by oscar2thin.pl

/tftpboot/image.img

/var/lib/systemimager/image/opt
/var/lib/systemimager/image/usr
/home

NFS mount
/usr
/opt
/home}

tftp

NFS
read-only

/tftpboot/bzImage Initial kernel
PXE

Figure 1. Master node and node scheme

2.1.5 Image compression, installation, PXE and NFS
configuration

The image is then unmounted, compressed (because de-
fault kernel can uncompress ramdisks on the fly) and co-
pied in the/tftpboot directory so that it can be transfe-
red by TFTP. The default configuration file for PXE is crea-
ted (/tftpboot/pxelinux.cfg/default) so that PXE
loads the kernel/tftpoot/bzImage and the ramdisk we
just created.

The /etc/exports is adjusted so that all the systemi-
mager image is exported (read only) to the cluster net with
a given subnet mask./home is exported read-write to the
same network.

3 Development road-map

The main goal of the thin-OSCAR work-group is to add
diskless and systemless support to the OSCAR clustering
framework. As a consequence, support for all the models
(root-NFS based, NBD based and single system image ba-
sed) of diskless and systemless nodes is expected. This will
lead to profound modification or at least strong interactions
with some core components of OSCAR that we will try to
anticipate in the next section. This road-map is a more de-
tailed version of theoscar-package/ROADMAP file.

3.1 Kernel discussion

For the moment, you need to compile your own
kernel (sample configuration file provided in the
sample/ramdisk.cfg file). We plan to distribute some
kernels with the thin-OSCAR package. It is the simplest
solution as we can not provide support for any installa-
tion and configuration. General NIC will be supported
(eepro100, rtl8139, ...) and, of course, configuration file
provided so that exotic hardware can easily be supported
(with a kernel recompilation).

Modular kernel is another possibility that is already used
in LTSP [5]. The potential number of modules needed by a
diskless node is small : network adapters and (distributed)
filesystems are the two main classes of necessary drivers.
Moreover, we will focus our development effort on nodes

with i586 or higher and PCI bus. Only the necessary mo-
dules will be included in the image in order to keep the
image small. Other modules can be accessed via a distri-
buted file system and only those from the two mentioned
classes (NIC and filesystem) are indispensable for the suc-
cessfull network boot of the node.

Because we will distribute our kernel, we will be able to
add support for very different clustering solutions :

– root-NFS, ramdisk or NBD based diskless/systemless
nodes

– distributed file systems (lustre, XFS, ...)
– automatic load balancing (openMOSIX)
– trace capability (Linux Trace Toolkit)
– real-time Linux (RTAI)

3.2 version 0.0-0.5 : Proof of concept

This is the actual version of thin-OSCAR.

3.2.1 Features

– All nodes DHCP
– Homogeneous cluster only : all nodes share the same

image
– Monolithic kernel only
– Sample kernel configuration file provided

3.2.2 To-do

– Add a button in the OSCAR wizard for making thin-
OSCAR nodes

– Pre-compiled kernel (1 standard, 1 SMP) with the
most common NIC drivers built-in.

– Distro independence : most of what theoscar2thin.pl
script is doing right now is very distro-dependent. We
want to be distro independent and will certainly write
a distro abstraction layer in the process.

3.3 0.5-1.0 : OSCAR integration

– Well tested and functional version for complete disk-
less cluster

– Support for mixed cluster :C3 interaction !
– Storage of node information in order to provide he-

terogeneous cluster support (each node can use a dif-
ferent kernel or a different image). SIS integration?

– Command Line Interface :
– Creation of a complete diskless cluster with a

simple file having the following information :
MAC,IP,node name,KERNEL,SISIMAGE

– Automatic collection of all MAC address : comple-
tely automatic install

3.4 1.0-1.5 : Heterogeneous cluster support

– Meta-definition of diskless model (name of model,
kernel to use, SIS image to use, DISK usage [none,
/tmp, /var, /home, ...], modules to keep [drivers/net],
configuration file generator in order to fill configura-
tion files [/etc/X11/XF86config-4, ...].

The aim of this step is to support heterogeneous clus-
ters : disk/no disk, swap file, swap partition, /tmp storage,
distributed /home, ...

3.5 2.0 : long term objective / wish-list

– provide last generation kernel for diskless nodes with
precompiled utilities (openMosix, LTT, lustre, coda,
...) so that tests can easily be made and other types of
clusters can be supported.

4 OSCAR interaction

In this section we will examine what kinds of additional
features are needed by OSCAR to support thin-OSCAR.
When possible, the actual component of OSCAR that is
involved will be identified and some solutions proposed.
Some items are more important than others and this will
help us to prioritize OSCAR and thin-OSCAR develop-
ment.

4.1 Storage of additional thin-OSCAR information :
OSCAR Database

As explained in the first section of this article, there is
several kind of nodes and the ultimate goal of thin-OSCAR
is to support all the nodes. Nodes properties have to be ca-
refully determined. As it can be used by several OSCAR
packages, this data should be organized in a relational da-
tabase of well defined structure and format. While OSCAR
Database provides a database abstraction and a permanent
storage area for OSCAR packages, all the common infor-
mation has to be organized and a GUI has to be created to
enter this data (MAC address, model, ...).

In order to support diskless and systemless clusters, the
installation process of an image has to be refined. Indeed,
systematic format of hard disk prior to installation has to
be avoided.

4.2 Image diffusion and build : systemimager ?

This is one of the steps made by theoscar2thin.pl script.
As we use mainly SIS information and certainly redo (very
crudely) what SIS is already doing (namely network and
file-system configuration), maybe a kind of integration
should occur in order to ease the development of both SIS
and thin-OSCAR.

4.3 Cluster Management : C3

C3 is a core component of OSCAR and it works very
well with nodes with disk. In order to support diskless (and
systemless) clusters, theC3 tools have to be aware of disk-
less nodes. Several commands have to be modified :

– cpush Instead of remote copying the file, the file has
to be copied in the relevant SIS image directory

– cpushimageA new initial RAM disk has to be regene-
rated and nodes using this image has to be rebooted

– crm has to remove files in the SIS image directory

Morevover, warning should be send to the user because
he can’t modify a single node : those actions will affect the
group of nodes that use the altered image.

4.4 Different kinds of nodes

This is a crucial point. Currently, nodes can be “persona-
lized” only with the selection of different rpmlist for them.
However, in practice, there is one (or two !) file available
for each distribution. We need a more complete way of ma-
naging different kinds of nodes.

A mechanism to store, distribute and manage node “pro-
files” has to be created within OSCAR. The potential of
this point is very important for the openness of OSCAR.
Here are some arguments in favor of OSCAR node mode-
lization :

– Separation of the master node in several nodes in or-
der to achieve a better scaling : dedicated NFS server,
dedicated PBS server, dedicated monitoring server, ...

– Cluster hierarchy : OSCAR currently supports two le-
vels of nodes (one master and several nodes). For large
clusters, this is not suitable and we should be able to
add at least one level. However, implementing one ad-
ditional level is not much more difficult than adding a
general node abstraction layer.

Conclusion

Useful definitions of nodes were exposed : diskless, sys-
temless and diskfull. Then some techniques for diskless
and systemless clustering were briefly reviewed. Finally,
the goals, actual implementation and future development
of thin-OSCAR were exposed.

The last part discussed interactions with OSCAR, OS-
CAR modifications and finally new OSCAR features that
are needed in order to fulfill the thin-OSCAR goals. Even
if this is a written article, most of what is exposed here is
open for discussion and not carved in stone !

Acknowledgments

We would like to thank Michel Barrette, Mehdi Bozzo-
Rey and Sean Dague for valuable discussion. All this work
was possible thanks to the existence of the Center for Scien-
tific Computing of Sherbrooke University [2] and its enthu-
siastic acceptance of the Open Source model.

References
1. Open Source Cluster Application Resource (OSCAR)

http://oscar.sf.net/
2. Centre de Calcul Scientifique, Université de Sherbrooke

http://ccs.usherbrooke.ca/
3. Development, installation and maintenance of Elix-II, a180 nodes

diskless cluster running thin-OSCAR, M. Barrette, M. Bozzo-Rey,
C. Gauthier, F. Giraldeau, B. des Ligneris, J.-P. Turcotte,P. Vachon,
A. Veilleux, submitted to HPCS2003.

4. thin-OSCAR work-group. Support for diskless and systemless clus-
ter for OSCAR
http://thin-oscar.ccs.usherbrooke.ca/

5. Linux Terminal Server Project
http://www.ltsp.org/

6. Cluster Command & Control (C3) power tools,
http://www.csm.ornl.gov/torc/C3

7. NFS-Root mini-HOWTO
http://www.tldp.org/HOWTO/mini/NFS-Root.html

8. TFTP standard (RFC 1350)
ftp://ftp.rfc-editor.org/in-notes/rfc1350.txt

9. System Installation Suite website
http://www.sisuite.org/

10. Root Raid in Ram How-To, Mehdi Bozzo-Rey, Michel Barrette,
Benoı̂t des Ligneris submitted to HPCS2003 (2003).

11. Network Block Device project page http://nbd.
sourceforge.net/

12. The Network Block Device,Linux Journal, 73, may 2001http:
//www.linuxjournal.com/article.php?sid=3778

13. Scyld Beowulf Scalable Computinghttp://www.scyld.com/
14. Beowulf Distributed Process Spacehttp://bproc.

sourceforge.net/
15. Single System Image Clusters (SSI) for Linuxhttp://

openssi.org
16. openMOSIXhttp://www.openmosix.org/

